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What is a role of inland water in biogeochemical cycle ? 

Common knowledge? Terrestrial biosphere was 
assumed to take up most of carbon on land. 

(Battin et al., 2009) (Aufdenkampe et al., 2009) 

Necessity to clarify mutual interaction 
between hydrologic, geomorphic, and 

ecological processes. 

Inland waters process large amounts of 
organic carbon and must be considered in 

strategies to mitigate climate change. 
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National Integrated Catchment-based Eco-hydrology (NICE) model 
(Nakayama et al., WRR2004; HESSD2006; HP2006,2008,2011,2012,2013; STOTEN2007; ECOMOD2008; 

FORECO2008; GPC2008,2010,2013; RRA2010; LAND2010; ENPO2011; AGMET2011; WST2012; ECOHYD2013)  



1. Developing 3-D process-based model (NICE) which simulates hydrologic 
cycle, mass transport, and vegetation succession processes iteratively, 
by combining with previous researches. 

2. Verification of eco-hydrological process with previous global simulated 
results (single-layer aquifer for climate-groundwater interaction or 
simple two-dimensional model at equilibrium water table). 

3. Estimation of CO2 evasion (degassing) in inland water by empirical 
regression model (combining NICE simulated result, global dataset, 
and previous data). Evaluation of total flux, heterogeneous distribution 
of degassing, and hot spots. 

4. Further extension of NICE to include biogeochemical cycle accompanied 
by hydrologic cycle in inland water; Reaction between inorganic and 
organic carbons (DOC, POC, DIC, pCO2, etc.), and its relation to 
nitrogen and phosphorus, etc. 

5. This process might be beyond a residual or not within error/uncertainty 
range in global carbon cycle, and also help to diminish the uncertainty 
of carbon cycle as much as possible. 

Objective of this study 

- Role of inland water on biogeochemical cycle - 
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Identification of hot spot in carbon cycle 
Impact of inland water in carbon cycle  

Up-scaling to global scale 

Classification 
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Hydrologic simulation for better understanding of global biogeochemical cycle 
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Groundwater level simulated by NICE 

(Fan et al., 2013) 

(Niu et al., 2007) 

Groundwater level in previous researches 

Single-layer aquifer for climate-
groundwater interaction 

Simple two-dimensional model 
at equilibrium water table 
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Comparison of groundwater level simulated by NICE with previous researches 

SIMGM (Simple Groundwater 
Model) 
・Single-layer aquifer below the 
model soil column 
・Lateral transport of groundwater 
is parameterized through 
TOPMODEL baseflow formulation 
(decay factor) 
・Does not explicitly account for 
groundwater from cell to cell and 
exchange with streams 

LEAF-Hydro-Flood 
・Extension of LEAF, the land-
surface component in RAMS 
(Regional Atmosphere Modeling 
System) 
・New layers extending to water 
table 
・Water table at equilibrium state 
・Include lateral exchange with 
adjacent cells and exchange with 
streams (Darcy’s law) Three-dimensional model including 

unconfined & confined aquifers 
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Closely related to pCO2, DOC, DIC, and POC in inland water ! 

・pCO2 is important to evaluate CO2 flux to the atmosphere (evasion) 

・DOC, DIC, and POC are important to evaluate CO2 flux to the ocean 

(Yao et al., 2007; Zeng et 
al., 2010; Aufdenkampe 
et al., 2011; Butman & 
Raymond, 2011; Global 
River Chemistry 
Database, 2013; Laruelle 
et al., 2013, etc.) 

pCO2 (Partial Pressure of CO2) DOC (Dissolved Organic Carbon) 

DIC (Dissolved Inorganic Carbon) POC (Particulate Organic Carbon) 

How about carbon cycle in inland water ??? 



Depend on 
methods  ? 
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Necessity to 
develop 

process-based 
model of 

carbon cycle ! 

Calculation of CO2 fluxes (mg C m-2 d-1)  

to the atmosphere 

FCO2 = k x kh x [(pCO2water) – (pCO2air)] 
 

k (m/d) : CO2 exchange velocity coefficient 

k = k600(Sc/600)-n  : n=0.5 (Jahne et al., 1987) 

k600 = (1-f) x 0.31u2 + f x 0.35w 

f : dominant ratio of inland water calculated by GIS 

w (cm/s) : water velocity simulated by NICE 

u (m/s) : wind speed calculated by meteo. dataset  

kh : Henry’s constant corrected for temperature 

     = 10-(1.11+0.016xT-0.00007xT^2)  for temp.(T) in ℃ 

pCO2water & pCO2air : partial pressure CO2 (matm) 

pCO2water : given data (Laruelle et al., 2013) 

Assumption pCO2air = 370 ppm (global average in 2000) 

Global 
database 

Other estimation of k 
・wind-based approach 

   (Cole & Caraco, 1998) 

・small eddy version of 

surface renewal model 

   (MacIntyre et al., 1995) 

・wind-based model including 

diel heating & cooling 

   (MacIntyre et al., 2010) 

・function of discharge & 

wind 

   (Alin et al., 2011) 

・etc. 
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1 deg mesh: total river = 1138 
All river length of each stream order (1 - 6) at 
each grid were calculated by ArcGIS software. 
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Relation between Strahler stream order & 
stream width 
(Downing et al., 2012) 



・ Depend on methods 
・ Large uncertainty 
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Water area was estimated by; 
・All river length calculated by GIS 
・Relation between Strahler stream 
order & stream width 

Possibility to underestimate CO2 evasion ! 

Estimation of CO2 evasion in inland water by empirical regression model  

CO2 flux 
(mgC/m2/day) 
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Total FCO2 (PgC/yr) = 0.69 < 1.2 (Aufdenkampe et al., 2011) 

Cf. k=2.0m/d(=const)→Total FCO2 (PgC/yr) = 1.17 

Necessity to develop process-based 
model of carbon cycle in inland water ! 
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Closely related to pCO2, DOC, DIC, 
and POC in inland water ! 

・pCO2 is important to evaluate CO2 
flux to the atmosphere (evasion) 
・DOC, DIC, and POC are important to 
evaluate CO2 flux to the ocean 

Need to estimate from the view point 
of terrestrial-aquatic continuum ! 
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Coupling between eco-hydrological process and carbon cycle in NICE 
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Improvement of carbon cycle in terrestrial ecosystem  

by coupling NICE with LPJWHyMe 

LPJ-WHyMe (LPJ Wetland Hydrology and Methane) 
 
・Water balance component similar to SiB2 (Simple Biosphere 
Model 2), a land-surface sub-model in NICE 
・Water table is calculated by Granberg et al.’s approach 
(function of water volume, acrotelm porosity and depth, etc 
 
 
・Evaporation is calculated as a linear function of water table 
・Surface runoff in peatlands is calculated as an exponential 
function of water table 
・Moss (Sphagnum) photosynthesis capacity depends on water 
table 
・Gross primary production in flood-tolerant C3 graminoids 
depends on water table 

 Directly input to LPJWHyMe 

Water table was replaced by daily value simulated 

by NICE (3-D groundwater flow sub-model) 

Improvement  in accuracy of inundation stress 

mechanism (photosynthesis & primary production) 

 Coupling NICE with LPJWHyMe 

Improvement  in accuracy of carbon cycle in 

terrestrial-aquatic continuum (CO2 & CH4 flux, DOC, 

DIC, etc.) 

Coupling NICE with water quality 
model in aquatic ecosystem 

Effect of G.W.L. on annual 
heterotrophic respiration (1998) 

NICE-LPJWHyMe coupling 

LPJWHyMe original 
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3. Mekong, 
Changjiang, 
Yellow Riv. 
(South Asia) 

1. Mississippi Riv. 
(North America) 

2. Ob Riv. 
(West Siberia) 

Comparison of annual carbon flux in inland water in regional scales 

DOC flux DIC flux POC flux 

Flux are functions (empirical relations) of drainage intensity, lithology, rock hardness, 
slope, organic carbon content, and sediment concentration. 

Flux are simulated by coupling NICE & biogeochemical cycle models (process-based). 

DOC flux DIC flux POC flux 

1 

2 

3 1 

2 

3 1 

2 

3 

(ISLSCP II; Ludwig et al., 2011) 

Carbon flux 
(TgC/yr) 

＞  5.0

～  5.0

～  3.0

～  2.0

～  1.0

～  0.50

～  0.25

～  0.10



i

j

60 70 80 90 100 110
110

115

120

125

130

135

140

145

150

155

CO2Reaer

300

270

240

210

180

150

120

90

60

30

0

i

j

230 240 250 260 270 280
130

140

150

160

170

CO2Reaer

300

270

240

210

180

150

120

90

60

30

0

i

j

265 270 275 280 285 290 295 300 305 310
95

100

105

110

115

120

125

130

135

CO2Reaer

300

270

240

210

180

150

120

90

60

30

0

0.000000 - 10.000000

10.000001 - 20.000000

20.000001 - 30.000000

30.000001 - 40.000000

40.000001 - 50.000000

50.000001 - 60.000000

60.000001 - 70.000000

70.000001 - 80.000000

80.000001 - 90.000000

90.000001 - 100.000000

100.000001 - 110.000000

110.000001 - 120.000000

120.000001 - 130.000000

130.000001 - 140.000000

140.000001 - 150.000000

150.000001 - 160.000000

160.000001 - 170.000000

170.000001 - 180.000000

180.000001 - 190.000000

190.000001 - 200.000000

200.000001 - 210.000000

210.000001 - 220.000000

220.000001 - 230.000000

230.000001 - 240.000000

240.000001 - 250.000000

250.000001 - 260.000000

260.000001 - 270.000000

270.000001 - 280.000000

280.000001 - 290.000000

290.000001 - 300.000000

300.000001 - 600.000000

CO2 flux 
(mgC/m2/day) 

         0 

     

         100 

 

         200 

 

         300 

Simulation of CO2 evasion in inland water by process-based model  
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Empirical regression model (NICE + global dataset) 

NICE & biogeochemical cycle coupled (process-based) model 



1. Development of multi-scaled model (both down-scaling and up-scaling) in 
order to improve the accuracy in complex feedback between hydrology, 
geomorphology, and ecology. 

2. Reproduction of hydrologic cycle including groundwater level and river 
discharge in global scale (1 deg mesh - tentative). Incorporation of 
nonlinear interaction between surface water and groundwater. 

3. Development of empirical regression model to estimate CO2 flux from rivers 
(about 1.0 PgC/year). Suggestion of CO2 exchange velocity coefficient as 
function of both discharge and wind. 

4. Further extension of NICE to include biogeochemical cycle accompanied by 
hydrologic cycle in inland water; Reaction between inorganic and organic 
carbons (DOC, POC, DIC, pCO2, etc.), and its relation to nitrogen and 
phosphorus, etc. 

5. Necessity to improve the accuracy of biogeochemical cycle through inland 
water and along terrestrial-aquatic continuum. Further comparison with 
carbon cycle estimation without effect of inland water. 

6. If this effect is important, the terrestrial CO2 sink may prove to be smaller 
than thought so far. 

Preliminary conclusions and way forwards 



Question ? 
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