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What is a role of inland water in biogeochemical cycle ?
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Figure 1| Thel ‘boundless carbon cycle’. The schematic highlights carbon fluxes through inland
waters®, and also includes pre-industrial® and anthropogenic? fluxes. Values are net fluxes between
pools (black) or rates of change within pools (red); units are Pg C yr; negative signs indicate a sink
from the atmosphere. Gross fluxes from the atmosphere to land and oceans, and the natural (Nat)
and anthropogenic (Ant) components of net primary production — the net uptake of carbon by
photosynthetic organisms — are shown for land and oceans. Gross primary production (GPP) and
ecosystem respiration (R) are poorly constrained™®; we therefore modified respiration to close the
carbon balance. Non-biological dissolution of anthropogenic carbon dioxide by the oceans is included
in these fluxes?. Fluxes to the lithosphere represent depesition to stable sedimentary basins, and the
flux from the lithosphere to land represents erosion of uplifted sedimentary rocks?

(Battin et al., 2009)
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Figure 3. The coupling of land, oceans, and armosphere by rivers, lakes, and
wetlands. All numbers are fluxes in units of Pg C yr', with values based on an
analysis by Battin et al. (2009); accumulation fluxes within both land and
ocean each equal 2.2 Pg C yr™'. The CO, ousgassing and continental burial
fluxes from Battin et al. (2009) are substantially larger than those published by
Cole et al. (2007), primarily on account of more complete consideration of
high-latitude lakes. A more balanced inclusion of tropical waters and wetlands,
and temperature dependencies on pCO, and k, as we consider in Table 1,
would require a further increase in outgassing fluxes to the armosphere. These

flux values have divect consequences to net C balances on land because of the
need to balance the dobal © budget. A\ fdankampe et al., 2009)

Common knowledge? Terrestrial biosphere was
assumed to take up most of carbon on land.

Inland waters process large amounts of
organic carbon and must be considered in

N
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strategies to mitigate climate change.

Necessity to clarify mutual interaction
between hydrologic, geomorphic, and
ecological processes.




National Integrated Catchment-based Eco-hydrology (NICE) model
(Nakayama et al., WRR2004; HESSD2006; HP2006,2008,2011,2012,2013; STOTEN2007; ECOMOD2008;
FORECO02008; GPC2008,2010,2013; RRA2010; LAND2010; ENPO2011; AGMET2011; WST2012; ECOHYD2013)
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Objective of this study
- Role of inland water on biogeochemical cycle -

1. Developing 3-D process-based model (NICE) which simulates hydrologic
cycle, mass transport, and vegetation succession processes iteratively,
by combining with previous researches.

2. Verification of eco-hydrological process with previous global simulated
results (single-layer aquifer for climate-groundwater interaction or
simple two-dimensional model at equilibrium water table).

3. Estimation of CO, evasion (degassing) in inland water by empirical
regression model (combining NICE simulated result, global dataset,
and previous data). Evaluation of total flux, heterogeneous distribution
of degassing, and hot spots.

4. Further extension of NICE to include biogeochemical cycle accompanied
by hydrologic cycle in inland water; Reaction between inorganic and
organic carbons (DOC, POC, DIC, pCO2, etc.), and its relation to
nitrogen and phosphorus, etc.

5. This process might be beyond a residual or not within error/uncertainty
range in global carbon cycle, and also help to diminish the uncertainty
of carbon cycle as much as possible.



Hydrologic simulation for better understanding of global biogeochemical cycle
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Comparison of groundwater level simulated by NICE with previous researches

Groundwater level in previous researches
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How about carbon cycle in inland water ???
DOC (Dissolved Organic Carbon)
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1 deg mesh: total river = 1138
All river length of each stream order (1 - 6) at
each grid were calculated by ArcGIS software.

Calculation of CO, fluxes (mg C m2 d-)
to the atmosphere

FC02 =k x kh X [(pC02water) - (pCOZair)]

k (m/d) : CO, exchange velocity coefficient
k = Kggo(Sc/600)™ : n=0.5 (Jahne et al., 1987)
Kgoo = (1-f) x 0.31u? + f x 0.35w
f : dominant ratio of inland water calculated by GIS GloHK
w (cm/s) : water velocity simulated by NICE
u (m/s) : wind speed calculated by meteo. dataset
k,, : Henry’s constant corrected for temperature

= 10-(1.11+0.016xT-0.00007xT"2) for temp(T) in °C
PCO,,,.ter & PCO,;, : partial pressure CO, (patm)
PCO,,,.ter - Given data (Laruelle et al., 2013)
Assumption pCO,_;. = 370 ppm (global average in 2000)

databgse

Relation between Strahler stream order &

stream width

(Downing et al., 2012)

Depend on
ethods ?

Larg
uncertainty
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Necessity to
develop
process-based
model of
carbon cycle !

Other estimation of k
-wind-based approach
(Cole & Caraco, 1998)
-small eddy version of
surface renewal model
(Maclntyre et al., 1995)
-wind-based model including
diel heating & cooling
(Maclintyre et al., 2010)
-function of discharge &
wind
(Alin et al., 2011)
-efc.




Estimation of CO, evasion in inland water by empirical regression model
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Carbon budgets at various basins/catchmnts

. . Closely related to pCO,, DOC, DIC,
Basin A <:> Basin B and POC in inland water!

DIC Cozﬁ ﬂ;CH4 DIC lCOz influx pCO, is important to evaluate CO,
|:> Xpol,[:*t D':DO C xport flux to the atmosphere (evasion)

Doc[ —> *DOC, DIC, and POC are important to

POC sedimeng | POC —— evaluate CO, flux to the ocean
l Seto‘,.‘g‘gi‘ :to‘r‘;‘g;‘ ‘ Need to estimate from the view point

of terrestrial-aquatic continuum !



Coupling between eco-hydrological process and carbon cycle in NICE
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Improvement of carbon cycle in terrestrial ecosystem
by coupling NICE with LPJWHyMe
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-Water balance component similar to SiB2 (Simple Biosphere
Model 2), a land-surface sub-model in NICE

-Water table is calculated by Granberg et al.’s approach
(function of water volume, acrotelm porosity and depth, etc

Directly input to LPJWHyMe

-Evaporation is calculated as a linear function of water table

- Surface runoff in peatlands is calculated as an exponential
function of water table

-Moss (Sphagnum) photosynthesis capacity depends on water
table

Gross primary production in flood-tolerant C3 graminoids
depends on water table
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{} Coupling NICE with LPJWHyMe

Water table was replaced by daily value simulated
by NICE (3-D groundwater flow sub-model)
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Down-scaling to evaluate hot spot of carbon cycle
Soil type in LPJWHyMe
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Comparison of annual carbon flux in inland water in regional scales
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Simulation of CO, evasion in inland water by process-based model

Empirical regression model (NICE + global dataset)
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Preliminary conclusions and way forwards

1. Development of multi-scaled model (both down-scaling and up-scaling) in
order to improve the accuracy in complex feedback between hydrology,
geomorphology, and ecology.

2. Reproduction of hydrologic cycle including groundwater level and river
discharge in global scale (1 deg mesh - tentative). Incorporation of
nonlinear interaction between surface water and groundwater.

3. Development of empirical regression model to estimate CO, flux from rivers
(about 1.0 PgClyear). Suggestion of CO, exchange velocity coefficient as
function of both discharge and wind.

4. Further extension of NICE to include biogeochemical cycle accompanied by
hydrologic cycle in inland water; Reaction between inorganic and organic
carbons (DOC, POC, DIC, pCO,, etc.), and its relation to nitrogen and
phosphorus, etc.

5. Necessity to improve the accuracy of biogeochemical cycle through inland
water and along terrestrial-aquatic continuum. Further comparison with
carbon cycle estimation without effect of inland water.

6. If this effect is important, the terrestrial CO, sink may prove to be smaller
than thought so far.
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