Preliminary results of Rooftop Rainwater Harvesting and shallow well infiltration pilot project in the Danube-Tisza Interfluve, Hungary

Zsóka Szabó,
Tibor Ridavits, Endre Csiszár, Judit Mádl-Szőnyi
1. Introduction and aims

- Due to **climate change**, weather conditions are becoming more extreme, with longer periods of drought and flood causing environmental, agricultural and consequent social and economic problems.

- **Managed Aquifer Recharge** is a suitable way to reduce these inequalities and helps mitigating the related consequences.

- **The research aim** is to find local scale solutions to the water management problems of the Danube-Tisza Interfluve and evaluate how MAR can contribute to the water shortage of the area.

![Schematic figure of rooftop rainwater harvesting and shallow well infiltration](https://inowas.com/mar/)
2. Study area

Location of the local study area around the town of Kerekegyháza (modified from Kohán & Szalai, 2014)

Water level changes between 1956-60 and 2002 (VITUKI, 2002)

Reasons of groundwater level reduction (based on Pálfai, 2010 and Nagy et al., 2016)

- climate change (precipitation and evaporation)
- deep groundwater abstraction
- shallow groundwater abstraction
- land use changes
- changes in agricultural water management
- other
3. Research background

- Water management problems in the broader area have been known for decades
- One of the most recent plans was to move water from the Danube Valley Channel to the center of the ridge, through existing channels and lakes (Nagy et al., 2016)
- Too expensive and not effective enough as the water can easily infiltrate from the channels and it would not reach the higher regions in sufficient amount
- Water chemical considerations, groundwater dependent ecosystems
4. Experimental pilot site

Source water
rainwater collected from the roof of a family house (in an agricultural small town)

Pretreatment
filtration before the water reaches the tube system

Aquifer
unconfined shallow aquifer, consisting of sand, with low water table and high TDS, not used by the residents anymore

MAR method
shallow well of 6.3 m depth, reaching the water table (water level is around 0.5 m in the well)
5. Preliminary results

Water level changes

Legend
- SW
- P1
- P2
- Precipitation

Water level [m a.s.l.]

Date [m/d/y]

Precipitation [mm]
5. Preliminary results

Changes in specific electrical conductivity
Water chemistry

- Decreasing TDS, Cl\(^{-}\), SO\(_4\)\(^{2-}\) and NO\(_3\)\(^{-}\) content in the shallow well

- Last sampling time: hydrochemical facies is very similar in the shallow well and the monitoring wells, however in P1 and P2, TDS is higher (twice the amount) and Mg\(^{2+}\) content is also significant (similar to the first samples from the shallow well)
5. Preliminary results

Changes in temperature
6. Conclusions

- The **water table increased** 20 cm in the first two months due to only 10 m3 of infiltrated water, however water level decreased ~20-40 cm due to a **longer drought in spring**

- The infiltration events are also detectable in the monitoring wells → **good communication** (~3.5 days of travel time)

- **TDS, Cl$^-$, SO$_4^{2-}$ and NO$_3^-$ content decreased** in the shallow well, however the monitoring wells are indicating TDS increase (dominantly Mg$^{2+}$ and HCO$_3^-$)
6. Conclusions

- The water table increased 20 cm in the first two months due to only 10 m3 of infiltrated water, however water level decreased ~20-40 cm due to a longer drought in spring.
- The infiltration events are also detectable in the monitoring wells → good communication (~3.5 days of travel time).
- TDS, Cl$^-$, SO$_4^{2-}$ and NO$_3^-$ content decreased in the shallow well, however the monitoring wells are indicating TDS increase (dominantly Mg$^{2+}$ and HCO$_3^-$).

7. Further plans

- Continuing the pilot project for at least one hydrological year.
- More detailed hydrochemical measurements of the shallow well and monitoring wells.
- Sampling of the rainwater and the water reaching the well from the PVC hoses.
- Flow and transport modeling to understand the processes occurring underground.
6. Conclusions

- The **water table increased** 20 cm in the first two months due to only 10 m3 of infiltrated water, however water level decreased ~20-40 cm due to a **longer drought in spring**
- The infiltration events are also detectable in the monitoring wells → **good communication** (~3.5 days of travel time)
- **TDS, Cl$^-$, SO$_4^{2-}$ and NO$_3^-$ content decreased** in the shallow well, however the monitoring wells are indicating TDS increase (dominantly Mg$^{2+}$ and HCO$_3^-$)

7. Further plans

- Continuing the pilot project for at least one hydrological year
- More detailed hydrochemical measurements of the shallow well and monitoring wells
- Sampling of the rainwater and the water reaching the well from the PVC hoses
- **Flow and transport modeling** to understand the processes occurring underground
- Extending the results of the pilot to the whole town to increase the water table without any negative side effects (settlement scale modeling + feasibility study)
Thank you for your kind attention!

The ENeRAG project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 810980