THE IMPACT OF MODERN CLIMATE CHANGES ON THE GROUNDWATER RECHARGE IN THE EUROPEAN PART OF RUSSIA

Prof. S. Grinevskiy,
Prof. S. Pozdniakov,
Ass. E. Dedulina

Project supported by Russian Science Foundation No. 16-17-10187
Modern climatic changes in the European Part of Russia (EPR)

Meteorological data of more than 20 weather stations from south to north of EPR

- Widespread increase in air temperature (to 2 °C) and decrease in wind speed (to 1.5 m/s) from 1980
- Ambiguous changes in precipitation and air humidity
Latitudinal changes of precipitation ΔP

A predominant increase in annual precipitation up to 50 mm/year

Different changes of seasonal precipitation in southern and northern regions

North:
- increased winter and summer precipitation
- decrease in autumn precipitation

South:
- decrease in winter and summer precipitation;
- increased autumn precipitation

Grinevskiy, Pozdniakov, Dedulina / IWRA Online conference - 2020
Comparison of mean annual and seasonal values for 1965-1988 и 1989-2018

Latitudinal changes of air temperature ΔT

- **General increase in annual temperature to 0.5-1.4°C**
- **Increase in air temperature in all seasons**
- **Maximum increase in winter temperature - by 1.5 - 3.0°C**
The predominant decrease in wind speed by an average of 0.7 m/s.

Relatively uniform seasonal decrease in wind speed by an average of 0.5-1 m/s.

Minor annual and seasonal changes in air humidity by ±1-3%.
How observed climate change affects groundwater recharge?

Research method: - simulation of groundwater recharge processes

Groundwater recharge model

Block 1: Model of surface water and energy balance – code SurfBal

Grinevskiy, Pozdniakov (2010) https://doi.org/10.1134/S0097807810050040

Grinevskiy et al., (2018) https://doi.org/10.1007/s10040-018-1831-1

Calculation the upper boundary flow and energy condition for HYDRUS 1D taking into account the snow accumulation and melting and freezing-thawing of the soil.

Input Data:
- daily seepage to the soil;
- daily potential evapotranspiration (FAO Penman-Monteith equation)

Block 2: Unsaturated flow model with root water uptake – code HYDRUS-1D

(Šimůnek et al. 2009)

Input Data:
- daily seepage to the soil;
- typical vegetation and soil parameters

Summary results:
- surface runoff
- actual evaporation and transpiration
- groundwater recharge

Processing simulation results to find out change of annual water balance, based on comparing previous (1965-1988) and modern (1989-2018) periods

\[
\Delta P = \Delta ETR + \Delta S + \Delta W \\
\pm \Delta V
\]

\(\Delta\) – difference between 1965-1988 and 1989-2018

Input Data:
- daily meteorological data for 1965-2018;
- typical vegetation and soil parameters
Simulation results: modern climatic changes of water balance

Surface runoff ΔS

Latitudinal changes of annual surface runoff ΔS for different landscapes

- Different changes of annual runoff in southern and northern regions: increase in the north, decrease in the south
- The best correlation between changes of surface runoff ΔS and precipitation ΔP

Comparison of mean intra-annual surface runoff

- General degradation of thawed flood runoff
- Increased winter runoff due to thaws
Simulation results: modern climatic changes of water balance

Evapotranspiration \(\Delta ET = \Delta E + \Delta TR \)

Latitudinal changes of annual evapotranspiration \(\Delta ET \) for different landscapes

- **Irregular changes** of annual evapotranspiration:
 - increase in the north and south and
decrease in the central part

Complex and opposite impact:

- an increase in precipitation and temperature leads to an *increase of transpiration*
- a decrease in wind speed leads to a *decrease in evaporation*

Correlation between changes of transpiration \(\Delta TR \) and precipitation \(\Delta P \)

Correlation between reduction in evaporation \(\Delta E \) and wind speed decreasing \(\Delta U \)
Simulation results: modern climatic changes of water balance

Groundwater recharge ΔW

Latitudinal changes of annual groundwater recharge ΔW for different landscapes

- No changes of groundwater recharge in the south and increase by 20-60 mm/year (up to 50%) in the north

Correlation between changes of recharge ΔW and winter-spring precipitation

Correlation between changes of recharge ΔW and aridity index $\Delta (P/ETP)$

Correlation between recharge change ΔW and soil freezing depth decreasing
Conclusions

Despite a significant increase in air temperature, simulated *groundwater recharge* in the southern regions *did not change, but even increased* in the central and northern regions of European Part of Russia.

There are two main reasons of this phenomena:

1. Despite an increase in air temperature, there was no significant increase in evapotranspiration, since *the increase in air temperature is compensated by a decrease in wind speed*.

2. *Climatic changes in winter have a major impact on the increase in groundwater recharge* - an increase in winter temperature and precipitation leads to an increase in moisture absorption during periods of winter thaws when there is no evapotranspiration.

Analysis and *understanding of the modern climatic changes impact* on the processes of water balance transformation in the critical zone *make it possible to predict them more confidently in the future*.
Thank you for attention

Project supported by Russian Science Foundation No. 16-17-10187