Prediction model for cyanide environmental pollution in artisanal gold mining area by using logistic regression

Lovasoa Christine RAZANAMAHANDRYa*, Harinaivo Anderson ANDRIANISAa, Hela KAROUIa, Joel PODGORSKIb, and Hamma YACOUBAc

aInternational Institute for Water and Environmental Engineering (2iE), Department of Water and Sanitary Engineering, Laboratory of Water, Decontamination, Ecosystem and Health (LEDES), 01 PO Box 594, 01, Ouagadougou, Burkina Faso

bSwiss Federal Institute of Aquatic Science and Technology (EAWAG), Department of Water Resources and Drinking Water.Postfach 611 8600 Dübendorf. Switzerland.

cInternational Institute for Water and Environmental Engineering (2iE), Department of Civil and Hydraulic Engineering, Laboratory of Water Resources and Hydrology (LEAH), 01 PO Box 594, 01, Ouagadougou, Burkina Faso

*Corresponding author: Lovasoa Christine RAZANAMAHANDRY (c.razanamahandry@2ie-edu.org or tantely1989@gmail.com) Phone: + 226 66 69 16 57

Abstract

It has been reported that persistent cyanide pollution occurs in Artisanal small-scale gold mining (ASGM)-affected catchment areas in Burkina Faso. In the present study, the logistic regression method was employed to identify the factors that influence the spatial distribution of cyanide pollution as well as to predict the cyanide pollution map risk at catchment level. Soil samples were collected from two ASGM sites in the northern Zougnazagmiline(“North”) site and southern Galgouli(“South”) site parts of Burkina Faso, covering areas of 22 km2 and 20 km2, respectively. Free cyanide (FCN) concentration in each sample was measured. It was shown that
the spatial distribution of cyanide was solely controlled by the soil type in Zougnazagmiline and both the soil type and conductivity in Galgouli. On the other hand, the cyanidation zones within the two catchments were the places where the highest risk of cyanide pollution occurs, with probabilities of 0.8 and 1 in Zougnazagmiline and Galgouli, respectively. More than 20% of the settled area in the Zougnazagmiline and 5% of that in Galgouli were exposed to cyanide pollution. Logistic regression was able to reliably predict cyanide contamination in areas affected by ASGM. The model could be useful for decision-makers to plan ASGM-site decontamination.

Key Words: Hazardous chemicals, Catchment area, diffuse pollution, Soil contamination, Risk assessment, Burkina Faso
1 Introduction

Artisanal and small-scale gold mining (ASGM) has been widespread throughout the world for over 2000 years (Hilson, 2002a; Weng et al., 2014), and more developed since the mid-1980s in West Africa, including Burkina Faso (Butaré & Keita, 2009; Grätz, 2009). In 2004, between 10% and 15% of the gold mined in the world has been provided from ASGM (Adler et al., 2013; Grimaldi et al., 2015; Street et al., 2013; Telmer & Veiga, 2008). In Burkina Faso, small-scale artisanal miners produced approximately 12 tons of gold compared to an output of 14 tons from large-scale mines between 1986 and 1997 (Gajigo et al., 2012; Guèye, 2001).

The ASGM sector provides a livelihood for millions of people throughout the world (Siegel & Veiga, 2009; Weng et al., 2014). In the case of sub-Saharan Africa, at least two million people are directly employed in ASGM, and an additional 10 million more people depend on the sector for their survival (Adler et al., 2013; Chupezi & et al., 2009; Hilson, 2009; Janneh & Ping, 2011; Schure et al., 2011; Weng et al., 2014). Nevertheless, several negative impacts are associated with ASGM such as an increase of infectious diseases, violence and crime, child labour and a lacking emphasis on education, loss of biodiversity and exposure of miners to strong hazardous chemicals (Adler et al., 2013). In the natural environment, ASGM induces changes to land use and landscapes, instability of the ground and landslide sand water, air and soil pollution (Adler et al., 2013; Guimaraes et al., 2011). Environmental pollution is primarily caused by the use of toxic chemicals products, including cyanide, which is widely used in post-processing to extract residual gold after mercury processing. The residual material is rich in cyanide ions, which can ultimately leach into the environment without treatment or control (Adler et al., 2013; Bernstein, 2000; Sampat, 2003; Veiga et al., 2014; Velásquez-lópez et al., 2011).

Previous studies have shown that the main environmental parameters that control the distribution
of pollutants are land cover, topography, geology, rainfall, temperature, soil type, and distance from the pollution source (Kheir et al., 2014; Venkataraman and Uddameri, 2012). In addition, several chemical parameters, such as pH, soil conductivity and organic matter content, can also help explain the spatial distributions of pollutants (Kheir et al., 2014).

Cyanide is present in the environment as FCN, weak acid dissociable (WAD) and strong acid dissociable (SAD). The most toxic form is FCN. The subsurface behaviour of cyanide compounds in soil is governed by chemical and biological processes (Kjeldsen, 1999). The relevant chemical processes are adsorption, sorption, volatilization, complexation, sulfidation and dissolution-precipitation type reactions, which are sensitive to pH, temperature and redox conditions (Donato et al., 2007; Guo et al., 2014; Johnson, 2014; Klenk etal., 1996; Richards et al., 2000). On the other hand, microbial activity and plant uptake can affect the behaviour of cyanide in the environment (Kumar et al., 2016).

We have investigated the use, fate and behaviour of cyanide in two catchments areas affected by ASGM in Burkina Faso. It was found that up to 20 kg/week of cyanide could be illegally used in one catchment area for gold processing. Cyanide-containing leachate is then directly released into the environment without any treatment or control. FCN accumulates around the cyanide-processing zones, whereas some is also progressively transported to the catchment outlet through surface runoff and infiltration, which pollutes surface water, groundwater and soil within the catchment (Razanamahandry et al., 2016). However, the processes that control the transport of FCN are not sufficiently understood to allow the identification and targeting of pollution risk zones for the implementation of a remediation plan. In this regard, the Geographic Information Systems (GIS) could be useful in assessing cyanide pollution risk.

Related examples include modelling the adaptation of a mine-impacted community to landmine
contamination (Benini et al. 2002; Schultz et al. 2016) and risk mapping of landmine hazard and its spatial distribution (Alegria et al. 2011; Chamberlayne, 2002; Lacroix et al. 2013; Schultz et al., 2016). In addition, logistic regression (LR) is one of the most important statistical techniques developed for analysing and classifying categorical variables (Agresti, 2002; Hair et al., 1998; Mokhtari, 2014; Pohar et al., 2004). A GIS LR approach has been applied to landslide susceptibility mapping (Guns & Vanacker, 2012; Schultz et al., 2016; Van Den Eeckhaut et al., 2006; Wang et al., 2015), disease mapping (Craig et al., 2007; Ekpo et al., 2008; Goovaerts et al., 2015; Schultz et al., 2016), vulnerability mapping (Ettinger et al., 2015; Schultz et al., 2016), wildfire distribution (Rodrigues et al., 2014; Schultz et al., 2016), crime mapping (Capla et al., 2011; Caplan, 2011; Schultz et al., 2016), post-fire soil erosion (Notario et al., 2014) and pollutants mapping (Venkataraman and Uddameri, 2012). The environmental and chemical parameters that influence the subsurface spatial distribution of FCN appear to have not yet been investigated using LR.

The aim of the present study is to (i) create a cyanide pollution risk map for ASGM sites by applying the LR method, (ii) identify possible risk factors that may explain the spatial distribution of cyanide contaminated areas, and (iii) identify areas of high risk so that appropriate remediation actions can be taken.

We first developed a conceptual model of the spatial distribution of cyanide pollution risk. Factors relevant to cyanide pollution transport were then identified and probability maps for cyanide pollution risk were created and analysed.

2 Materials and Methods

2.1 Samples and study areas

Two ASGM sites were selected for modelling cyanide contamination using LR based on their
climatic and environmental conditions and mining activity. The first site, Zougnazagmiline, is located in the northern part of Burkina Faso (Fig.1a.). It is in the arid Sahelian climate zone with an average annual rainfall of less than 600 mm and contains primarily lixisols (FAO, 1998, 2001). All mining activities are illegal, and cyanidation takes place at several locations. The second area, Galgouli, is located in southern part of Burkina Faso (Fig.2a). It is a forest zone characterized by the Soudanese climate with an annual rainfall of 1200 mm and contains primarily arenosols (FAO, 1998, 2001). The site is controlled by a single private operator who holds a mining permit. Although cyanidation processing is illegal in Burkina Faso, it is still conducted in the area. However, as opposed to the Zougnazagmiline site, cyanidation takes place in only one location.

Two samples were collected from each site, in March 2015 and in April 2016. More than thirty points covering the cyanidation zones, catchment areas boundaries and outlets and the mining villages were selected for soil sampling (Fig. 1). Five soil samples were collected at each sampling point in 20 cm intervals from the surface to 1 m depth. Immediately following collection, samples were wrapped in black plastic bags and kept in a cooler until arrival in the laboratory, where they were refrigerated until analysis, which was usually performed after 24 hours.
2.2 Chemical reagents and analytical methods

The chemical reagents used, FCN extraction protocol and FCN analytical methods are described by Razanamahandry et al. (2016).

2.2 Logistic regression

2.2.1 Principle

Logistic regression (LR) is used to explain an observed or dependent variable through one or more independent predictor, or explanatory variables. In the present study, FCN concentrations represent the observed variable. Dependent and explanatory variables could be quantitative data. LR seeks and describes a relationship between the dependent variable and the explanatory variable (Shlutz et al., 2016) as shown in the equation (1) below:

\[p = \frac{1}{1 + e^{-y}} \]

(1)

Where:

\(p \) denotes the probability of occurrence of an event, which is cyanide contamination in this case of this study.

\(y \) is a linearised regression equation (2) below:

\[y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_n X_n \]

(2)

Where:

\(\alpha \) : the intercept

\(\beta_1, \beta_2, \ldots, \beta_n \) : the coefficients of the \(n \) explanatory variables estimated by maximum likelihood (Real et al., 2006; Schultz et al., 2016)

\(X_1, X_2, \ldots, X_n \) : the explanatory variables
The logit form of the model is:

\[
\text{logit} (p) = \log_e \left[\frac{p}{1-p} \right]
\]

(3)

where \(\text{logit} (p) \) denotes the \(\log \) (to base \(e \)) (Guns & Vanacker, 2012; Schultz et al., 2016).

Equation (1) gives the probability of occurrence. A hazard map can then be established by considering the cyanide guide value of 0.5 mg FCN kg\(^{-1}\)applied by World Health Organisation for agricultural soil in Burkina Faso. Values greater than 0.5 mg kg\(^{-1}\)pose a health risk. In this work, LR was used for finding independent variables related to cyanidation pollution and to produce a cyanide contamination hazard map.

The Receiver Operating Characteristics (ROC) curve assesses the predictive capability of a model by considering its trade-off between rates of true positive and true negative predictions (Van Den Eeckhaut et al., 2006; Wang et al., 2011; Schultz et al., 2016). A probability cut-off between high and low cases or events is ultimately selected to be used with a model to maximize its accuracy.

2.2.3 Model validation

Models were evaluated based on a number of statistical measurements, for example, the statistical coefficient as the Akaike Information Criterion (AIC) and the negative of twice the likelihood (-2 log L or LogLik-ratio), which is lower for a better fitting model (Allison, 2011). AIC is a relative goodness-of-fit statistic for comparing logistic regression models (Saefuddin et al., 2012). Lower AIC and - 2 log L values generally correspond to a better fitted model (Allison, 2011). Since AIC penalizes a model for using more parameters, minimizing the AIC optimizes the trade-off between goodness-of-fit and the number of parameters (Mcnew et al., 2013; Schultz et al., 2016). The Wald value of a variable coefficient is used to calculate its p-value, or significance, which should be equal to or less than 0.05. The Area Under the ROC Curve (AUC)
typically ranges in value between 0.5 and 1, with values higher than 0.7 generally indicating stronger associations between the predicted and observed values (Van Den Eeckhaut et al., 2006). An ROC curve is a technique for visualizing, organizing and selecting classifiers based on their performance (Fawcett, 2003). It has been extended for use in visualizing and analyzing the behavior of diagnostic systems (Fawcett, 2003; Swets, 1988). ROC curves have long been used in signal detection theory to depict the trade-off between true positive rates (y axis called sensitivity axis) and false alarm rates (x axis called specificity) of classifiers (Egan, 1975; Fawcett, 2003; Swets et al., 2000a). The ROC curve of a perfectly accurate logistic regression model would run vertically from (0,0) to (0,1) (y axis) and then horizontally to (1,1) (x axis) (Brenning, 2005; Van Den Eeckhaut et al., 2006; Schultz et al., 2016). The diagonal line y = x represents the strategy of randomly guessing a class in which it can be expected to get half the positives and half the negatives correct (Fawcett, 2003). In order to get away from this diagonal into the upper triangular region, the classifier must exploit some information in the data (Fawcett, 2003). Any classifier that appears in the lower right triangle performs worse than random guessing (Fawcett, 2003).

2.2.4 LR tool

The LR model was created and downloaded from the freely available “Groundwater Assessment Platform” web site, provided by the Swiss Federal Institute of Aquatic Science and Technology (EAWAG)[Groundwater Assessment Platform (GAP), 2015] and funded by the Swiss Agency for Development and Cooperation (SDC).

2.2.5 Methodological approach

The procedure for modelling cyanide pollution was done in three steps as shown in Figure 2. The first step was to apply LR with all of the explanatory variables, which were evaluated according
to their p-values. Variables with p-values less than or equal to 0.05 were retained. In the second step, the same explanatory variables from the first step were used in a stepwise LR (SLR), whereby variables were discarded individually in consecutive steps according to their effect on the AIC. The produced Model 2, which was again evaluated based on the selected explanatory variable coefficients (β_i). Explanatory variables with β_i lower than the respective Wald value were retained for use in producing the final model, Model 3.

A map of cyanide pollution hazard was created for each model. This map has a raster surface with a cell size $X = 0.000171$ and $Y = 0.000171$ and an angular units degree that contains continuous probability values ranging from 0 to 1, obtained by interpolating on a grid the predicted coefficient value points under ArcGIS software 10.1 version. The Inverse Weighted Distance (IDW) method was used for interpolation. This method determines the grid's cell values by using a linearly weighted combination of a set of the evaluation points (Schlutz et al., 2016). The cyanide pollution risk maps have been classified into five risk levels (very low, low, moderate, high, very high), based on the following cut-off values: 0.20, 0.40, 0.60, 0.80, and 1.
3 Data

The model input data comprised the dependent variable and the explanatory variables as shown in Table 1. Explanatory variables were chosen for use in the model based on their relationship to the spatial distribution of cyanide pollution according to previous studies (Kheir et al., 2014; Venkataraman and Uddameri, 2012). The FCN concentration data used are the mean FCN concentrations obtained from each soil sample during the 2015 and 2016 sampling campaigns. The FCN concentration data were uploaded in .CSV format, whereas. All explanatory variables have a raster image in .tif format.

The boundaries of the two catchment areas were also uploaded for delineating the predicted map of the model.
<table>
<thead>
<tr>
<th>Data</th>
<th>Type</th>
<th>Variable</th>
<th>Coverage</th>
<th>Source</th>
<th>Cell size(X,Y),angular unit degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geology</td>
<td>Continuous</td>
<td>Independent</td>
<td>2013</td>
<td>DGMEC<sup>a</sup></td>
<td>0.022689,0.022689</td>
</tr>
<tr>
<td>Rainfall (mm)</td>
<td>Continuous</td>
<td>Independent</td>
<td>1970 - 2012</td>
<td>MGD<sup>b</sup></td>
<td>0.024955,0.024955</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>Continuous</td>
<td>Independent</td>
<td>1970 - 2012</td>
<td>MGD</td>
<td>0.024955,0.024955</td>
</tr>
<tr>
<td>Topographic elevation (m)</td>
<td>Continuous</td>
<td>Independent</td>
<td>2008</td>
<td>GLCF<sup>c</sup></td>
<td>0.000833,0.000833</td>
</tr>
<tr>
<td>Land use</td>
<td>Continuous</td>
<td>Independent</td>
<td>2010</td>
<td>BUNASOL<sup>d</sup></td>
<td>0.000280,0.000280</td>
</tr>
<tr>
<td>Soil type</td>
<td>Continuous</td>
<td>Independent</td>
<td>2010</td>
<td>BUNASOL</td>
<td>0.000289,0.000289</td>
</tr>
<tr>
<td>Soil pH</td>
<td>Categorical</td>
<td>Independent</td>
<td>2015-2016</td>
<td>Present study</td>
<td>0.00022,0.00022</td>
</tr>
<tr>
<td>Soil Conductivity (mS cm<sup>-1</sup>)</td>
<td>Categorical</td>
<td>Independent</td>
<td>2015-2016</td>
<td>Present study</td>
<td>9e-005,9e-005</td>
</tr>
<tr>
<td>Distance to cyanidation Ponds (m)</td>
<td>Categorical</td>
<td>Independent</td>
<td>2015-2016</td>
<td>Present study</td>
<td>8.6e-005,7.99e-005</td>
</tr>
<tr>
<td>F-CN Concentration (mg L<sup>-1</sup>)</td>
<td>Categorical</td>
<td>Dependent</td>
<td>2015-2016</td>
<td>Present study</td>
<td>7.99e-005,7.99e-0.005</td>
</tr>
</tbody>
</table>

^a: Direction Général des Mines, Energie et Carrières au Burkina Faso www.mines.gov.bf

^b: Direction Générale de la Météorologie au Burkina Faso www.meteoburkina.bf

^c: Global Land Cover Facility glcfapp.glcf.umd.edu

^d: Bureau National de Sol au Burkina Faso www.erails.net/BF/bunasols
4 Results and discussion

4.1 Factors influencing the spatial distribution of cyanide

Table 2 summarizes the LR model of each area.

In Zougnazagmiline, the three models have an AUC around 0.8 and p-values of 0.42, 0.05 and 0.01 for Model 1, Model 2 and Model 3, respectively. The Loglik-ratio of Model 3 was lower than that of Model 1 and Model 2 (-18.96 < 0.00). All models have good AUC values greater than 0.7. Only the p-value of Model 2 and Model 3 are equal to or less than 0.05.

In Galgouli, the AUC of Model 1, Model 2 and Model 3 are 0.76, 0.74 and 0.69, respectively, whereas their respective p-values are 0.61, 0.05 and 0.02. In regard to the AUC value, good model fit has been established except for Model 3 in Galgouli., which indicates that the explanatory variables are related to the spatial distribution of cyanide contamination [Lin et al., 2011].

Table 2: The p-value and the AUC values for each model

<table>
<thead>
<tr>
<th>Site</th>
<th>Model name</th>
<th>Loglik-ratio</th>
<th>Deviance</th>
<th>X^2</th>
<th>Explanatory variable number</th>
<th>p-Value</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zougnazagmiline</td>
<td>Model 1</td>
<td>0.00</td>
<td>32.21</td>
<td>9.18</td>
<td>9</td>
<td>0.42</td>
<td>0.79</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.00</td>
<td>34.85</td>
<td>9.40</td>
<td>4</td>
<td></td>
<td>0.05</td>
<td>0.78</td>
</tr>
<tr>
<td>Model 3</td>
<td>-18.96</td>
<td>37.92</td>
<td>6.33</td>
<td>1</td>
<td></td>
<td>0.01</td>
<td>0.75</td>
</tr>
<tr>
<td>Galgouli</td>
<td>Model 1</td>
<td>0.00</td>
<td>46.63</td>
<td>7.20</td>
<td>9</td>
<td>0.61</td>
<td>0.76</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.00</td>
<td>50.26</td>
<td>3.58</td>
<td>2</td>
<td></td>
<td>0.05</td>
<td>0.74</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.00</td>
<td>52.25</td>
<td>1.59</td>
<td>1</td>
<td></td>
<td>0.02</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Figure 3 shows the ROC curves for the three models at each site. In terms of the p-value in both sites, the level of confidence increases from Model 1 to Models 2 and 3 (from 58 and 31 % to more than 95 %). Model 1 of both sites contains more explanatory variables than the other models. The p-values of the models improved as insignificant explanatory variables number were removed. In both sites, Model 1 has a p-value greater than 0.05, although Models 2 and 3 have p-values less than 0.05. Model 1 is not significant and was therefore removed from consideration.

The Log-likelihood ratios (Loglik-ratio) for all models are almost the same, except for Model 3 at Zougnazagmiline site, which was lower.
Figure 3: ROC curves for the (a) Zougnazameline site and (b) Galgouli site.

Table 3 shows the different explanatory variables and variable coefficient for each model. For the Zougnazamiline site, the significant explanatory variable is the “soil type”. However, only the “soil type” and the “soil conductivity” are significant for Galgouli site. The explanatory variables that are best correlated (p-value = 0.05) with the spatial distribution of the cyanide are “soil type” and the “soil conductivity” for Model 2 in Zougnazamiline and in Galgouli, respectively. Venkataraman and Uddameri (2012) found similar results in modelling arsenic and nitrate pollutants in drinking water with a multinomial logistic regression, whereby soil and aquifer properties were significant.

The soil types at the northern and southern parts of Burkina Faso are dominated by lixisols and arenosols, respectively (Pallo and Sawadogo, 2011). FAO (1998, 2001) defines lixisols as soils
with an argic layer from the soil surface to 100-200 cm depth. According to ATSDR(1997), the clay that is abundantly present in the argic layer inhibits FCN complexation with other metals. In addition, lixisols have a low level of plant nutrients and a high erodibility (FAO, 1998, 2001) and is a major inhibitor for plant growth and biomass production (Ehlers et al., 2010; Vitousek, 1984). Consequently, the biological activity of microorganisms and plants is not sufficient to degrade or complex FCN. FCN is therefore easily released, resulting in a positive correlation between soil type and FCN at Zougnazagmiline.

On the other hand, arenosols are characterised by sandy loam soils with low conductivity[FAO, 1998, 2001], which means that several cations and minerals are available in a low quantity [FAO,1999]. Most of the FCN is released because the CN⁻ ligand does not form a complex compounds with the cations[Dai et al., 2012; Ghosh et al., 2006; Kjeldsen, 1999; Theis and West, 1986]. For this reason, soil conductivity mainly influences the distribution of FCN in Galgouli.

Table 3: Explanatory variables coefficients for Zougnazagmiline and Galgouli

<table>
<thead>
<tr>
<th>Model name</th>
<th>Variable</th>
<th>Coefficient</th>
<th>Std error</th>
<th>Wald</th>
<th>Significance</th>
<th>Odds</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOUGNAZAGMILINE SITE</td>
<td>Interception</td>
<td>0.0249</td>
<td>0.1631</td>
<td>0.1527</td>
<td>0.8786</td>
<td>1.0252</td>
<td>0.7447</td>
<td>1.4113</td>
</tr>
<tr>
<td>Model 1</td>
<td>Geology</td>
<td>1.6255</td>
<td>2.2138</td>
<td>0.7343</td>
<td>0.4628</td>
<td>5.0808</td>
<td>0.0663</td>
<td>389.241</td>
</tr>
<tr>
<td></td>
<td>Rainfall (mm)</td>
<td>-0.0476</td>
<td>0.1583</td>
<td>-0.3005</td>
<td>0.7638</td>
<td>0.9535</td>
<td>0.6991</td>
<td>1.3005</td>
</tr>
<tr>
<td></td>
<td>Temperature (°C)</td>
<td>0.7543</td>
<td>4.9391</td>
<td>0.1527</td>
<td>0.8786</td>
<td>2.1261</td>
<td>0.0001</td>
<td>34010.2</td>
</tr>
<tr>
<td></td>
<td>Soil pH</td>
<td>2.182</td>
<td>5.3559</td>
<td>0.4074</td>
<td>0.6837</td>
<td>8.8642</td>
<td>0.0002</td>
<td>320932</td>
</tr>
<tr>
<td></td>
<td>Distance to cyanidation ponds (m)</td>
<td>0.0006</td>
<td>0.0008</td>
<td>0.7225</td>
<td>0.47</td>
<td>1.0006</td>
<td>0.999</td>
<td>1.0022</td>
</tr>
<tr>
<td>Topographic elevation (m)</td>
<td>-0.1166</td>
<td>0.8138</td>
<td>-0.1432</td>
<td>0.8861</td>
<td>0.89</td>
<td>0.1806</td>
<td>4.3862</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Soil conductivity (mS cm(^{-1}))</td>
<td>0.0026</td>
<td>0.0089</td>
<td>0.2883</td>
<td>0.7731</td>
<td>1.0026</td>
<td>0.9853</td>
<td>1.0202</td>
<td></td>
</tr>
<tr>
<td>Soil type</td>
<td>0.0093</td>
<td>0.0111</td>
<td>0.8351</td>
<td>0.4036</td>
<td>1.0093</td>
<td>0.9876</td>
<td>1.0315</td>
<td></td>
</tr>
<tr>
<td>Land use</td>
<td>0.064</td>
<td>0.6424</td>
<td>0.0996</td>
<td>0.9207</td>
<td>1.0661</td>
<td>0.3027</td>
<td>3.7549</td>
<td></td>
</tr>
</tbody>
</table>

Model 2

Intercept	-3.2791	2.6349	-1.2445	0.2133	0.0377	0.0002	6.5869
Distance to cyanidation ponds (m)	1.008	1.1631	0.8666	0.3861	2.7402	0.2804	26.7788
Soil conductivity	-0.0054	0.0052	-1.0223	0.3066	0.9947	0.9845	1.0049
Soil type	0.0139	0.0071	1.9462	0.0516	1.0139	0.9999	1.0282
Land use	-0.0818	0.486	-0.1683	0.8663	0.9215	0.3555	2.3887

Model 3

| Intercept | -1.2978 | 0.8099 | -1.6025 | 0.109043 | 0.2731 | 0.0559 | 1.3357 |
| Soil type | 0.0092 | 0.0039 | 2.3839 | 0.017131 | 1.0004 | 1.0016 | 1.017 |

GALGOULI SITE

Model 1

Intercept	0.02	0.978	0.0205	0.9837	1.0202	0.1501	6.9358
Geology	0.02	0.978	0.0205	0.9837	1.0202	0.1501	6.9358
Rainfall (mm)	-0.0167	0.7233	-0.0231	0.9816	0.9835	0.2383	4.0588
Temperature (°C)	0.5488	26.8382	0.0204	0.9837	1.7312	0	1E+23
Soil pH	-0.1987	0.2716	-0.7316	0.4644	0.8198	0.4814	1.3961
Distance to cyanidation ponds	0.0004	0.0009	0.4595	0.6459	1.0004	0.9987	1.0021
Topographic elevation (m)

<table>
<thead>
<tr>
<th></th>
<th>0.0029</th>
<th>0.0206</th>
<th>0.1387</th>
<th>0.8897</th>
<th>1.0029</th>
<th>0.9632</th>
<th>1.0442</th>
</tr>
</thead>
</table>

Soil conductivity (mS cm⁻¹)

<table>
<thead>
<tr>
<th></th>
<th>0.0005</th>
<th>0.0003</th>
<th>1.5717</th>
<th>0.116</th>
<th>1.0005</th>
<th>0.9999</th>
<th>1.0011</th>
</tr>
</thead>
</table>

Soil type

<table>
<thead>
<tr>
<th></th>
<th>0.0729</th>
<th>0.4133</th>
<th>0.1765</th>
<th>0.8599</th>
<th>1.0757</th>
<th>0.4785</th>
<th>2.4183</th>
</tr>
</thead>
</table>

Land use

<table>
<thead>
<tr>
<th></th>
<th>0.4548</th>
<th>0.7563</th>
<th>0.6014</th>
<th>0.5476</th>
<th>1.5759</th>
<th>0.3579</th>
<th>6.9393</th>
</tr>
</thead>
</table>

Model 2

<table>
<thead>
<tr>
<th>Intercept</th>
<th>-1.3562</th>
<th>0.5675</th>
<th>-2.3899</th>
<th>0.0169</th>
<th>0.2576</th>
<th>0.0847</th>
<th>0.7835</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil type</td>
<td>0.3126</td>
<td>0.2282</td>
<td>1.37</td>
<td>0.0707</td>
<td>1.367</td>
<td>0.8741</td>
<td>2.138</td>
</tr>
<tr>
<td>Soil conductivity</td>
<td>0.0004</td>
<td>0.0003</td>
<td>1.4247</td>
<td>0.054</td>
<td>1.0004</td>
<td>0.9999</td>
<td>1.0009</td>
</tr>
</tbody>
</table>

Model 3

<table>
<thead>
<tr>
<th>Intercept</th>
<th>-0.8933</th>
<th>0.4342</th>
<th>-2.0575</th>
<th>0.0396</th>
<th>0.4093</th>
<th>0.1748</th>
<th>0.9585</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil conductivity</td>
<td>0.0003</td>
<td>0.0003</td>
<td>1.22</td>
<td>0.023</td>
<td>1.0003</td>
<td>0.9998</td>
<td>1.0008</td>
</tr>
</tbody>
</table>

4.2 Cyanide contamination hazard

4.2.1 Cyanide hazard map

Figures 4 and 5 show the probability maps of the spatial distribution of cyanide contamination in Zougnazagmilene and Galgouli.

In Zougnazagmilene, cyanide contamination probability varies from very low to moderate near the catchment boundary, irrespective of the model. Figure 4 [Model 1] displays an over-predicted model for cyanide contamination hazard. In fact, the very high probability (p = 0.80 - 1) for cyanide contamination covers over 50% of the catchment area. Figure 4 [Model 2] and [Model 3], however, more precisely defines the zones that present a very high risk of cyanide
contamination, which represent 30% and 20% of the total surface area, respectively.

The zones with the greatest probability are near the cyanidation zones, which was expected. Part of the river bank also has a high chance of cyanide contamination, which is due to the river bank often containing clay, in which FCN is likely to be present.

On the other hand, there is a low probability of cyanide pollution around the catchment outlet as shown in Figure 4 [Model 3]. This is likely due to FCN volatilisation and dilution into the main stream flow because FCN is very soluble in surface water (Dash et al., 2009; Lötter, 2005).

[Model 1] [Model 2] [Model 3]
Figure 4: Probability map for cyanide contamination risk at the North.

Model 1 of Galgouli (Fig. 5) is also over-predicted. The areas of high probability of cyanide contamination cover about 40% of the total surface area. Model 2 and Model 3 in Figure 5 and give almost the same spatial distribution of cyanide in soil, with only 5% of the catchment area having a very high probability of cyanide contamination, which corresponds to the cyanidation zone. The explanatory factors selected in Model 2 and Model 3 are significantly correlated with and explain the spatial distribution of cyanide.

The area of predicted FCN contamination represents less of the catchment at Galgouli (5%) than at Zougnazamiline (20%).

Botz et al. (2015), Bureau et al. (2011) and Kjeldsen (1999) have reported that FCN could take the anion cyanide form (CN⁻) that reacts with metal cations under high pH conditions. Furthermore, Nsimba (2009) and Wong-chong et al. (2006) found that FCN takes the gaseous
form HCN and could easily volatilize under acidic conditions. The climate of Zougnazagmiline is arid with a basic soil, whereas Galgouli is humid with acidic soil. Therefore, CN⁻ is the dominant component of FCN in Zougnazagmiline whereas HCN is more available in Galgouli. Our results suggest that FCN accumulation in arid Zougnazagmiline and volatilisation in humid Galgouli. The soil characteristics could influence the cyanide spatial distribution in the soil. Since ASGM activities are more organized in Galgouli, the cyanidation zone is concentrated in one place. This is not the case in Zougnazagmiline, where the cyanidation zones were distributed throughout the catchment area, which increases the area subject to contamination. It could be a reason explaining the probability difference between the two sites.
As said in previous paragraph, FCN was more fixed by the Zougnazagmine soil than by that of Galgouli. It was reported that greater biological activity is observed in regions dominated by arenosols, which is characterised by sand particles, clay and sediment in which some structure and fertility are provided (FAO, 1998, 2001). Therefore, most of the FCN present in Galgouli was degraded by microbial activity, or reduced by vegetation uptake and complexation with metals, explaining the small area covered by FCN contamination (Figure 5).

4.2.2 Cyanide contamination exposure

The exposure of the populated areas (hamlets) to cyanide contamination is presented with Model 3 in Figures 4 and 5. More than 20% of the hamlets at Zougnazagmine are exposed to cyanide contamination, whereas only 5% of the hamlets are exposed in Galgouli.
5 Conclusions

ASGM is the primary economic activity of the people of Zougnazamiline and Galgouli. Since water and soil contamination by cyanide is widespread at these sites, it was deemed necessary to determine the most vulnerable areas in order to prioritize restoration of the degraded ecosystem. Environmental factors related to the spatial distribution of cyanide have been evaluated. Three predictive models using LR were created for each site, which have different climate conditions and soil characteristics. The most important factors influencing the FCN distribution are the soil type in Zougnazamiline and the soil conductivity in Galgouli. Therefore, when the zone is arid, only the soil type would influence the FCN distribution but if it is humid, both the soil type and the soil conductivity would be the main influencing parameter. Environmental factors such as the distance from cyanidation zones, topographic elevation and land use are likely to increase.
cyanide contamination risk. Since the soil conductivity and soil type are dependent upon the soil composition, that aspect needs to be investigated in depth to fully understand FCN distribution in ASGM affected areas. Moreover, the LR model should also be tested in the zone under Soudanese-Sahelian climate to determine the main parameters that influence the FCN distribution in semi-arid areas. This would then allow for the prediction of FCN distribution for any ASGM area in Burkina Faso based on its climate and soil characteristics.

Acknowledgments

This present study was funded by the Swiss Agency for Development and Cooperation under the 3E Programme, Grant Number 81016359/1. Authors would like to particularly thank Dr Fowe TAZEN, and Mr Sina THIAM, who gave additional advices for the data analysis, and to the laboratory technicians who contributed in data collection and FCN analysis.

References

Butaré, I., & Keita, S., 2009. Aspects environnementaux liés au développement du secteur minier

FAO, 2001. Lecture notes on the major soils of the World, World Soil Resources Reports. doi:10.1136/gut.27.11.1400-b

weighted regression analysis of percentage of late-stage prostate cancer diagnosis in Florida.

Van Den Eekhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G.,

