Performance comparison of temporal precipitation downscaling methods

Hua Bai
PhD student, Tsinghua Univ., Beijing, China.
baihua0001@163.com
Introduction

- The impacts of climate change related urban flooding in China cities
- Motivation and objectives of the research

Temporal precipitation downscaling method

- Foundation of mathematics
- Calculation procedures
- Performance evaluation based on the statistical indicators

Case study: three cities in China

- The selection of distribution forms
- The determination of scale invariance options
- Performance evaluation

Conclusion
Introduction — The issue of urban inundation in China

According to a survey executed by the Ministry of Housing and Urban-Rural Development (MOHURD) in China:

- Investigated period: 2008~2010
- 289 / 349 cities (83%)
- Varying degrees of urban inundation issues

- ~250mil. RMB
 - 250K people

- Traffic and power shut down for more than 1 day;

Beijing 2012-07-21

- 79 death;
- 1.6 mil. people;
- 11.6 bill. RMB

Wuhan 2013-07-07

- 5 death;
- >1000 vehicles;
- ~250mil. RMB

Kunming 2013-07-19

Xiamen 2013-05-16

Mianzhen 2013-05-16
Introduction — Accountable reasons

Drainage Infrastructure
- Stormwater Drainage: 50 km per city
- Buffers: scarce detention and infiltration devices

Land-use Change
- Urban Sprawl
- Increasing percentage of impervious pavement

Planning Policy
- System designed in an empirical way
- Insufficient criteria: 1-3 design rainfall return period

Climate Change
- Extreme rainfall: more frequently
- High magnitude still there, low occurrence no longer exist

Inadequate Capacity for urban runoff disposal and absorption;
Changed hydrological processes;
Not flexible enough; Not efficient enough;
Much stronger input
Introduction— Climate related precipitation changes

Legend:

Rainfall amount/ duration

Annual rainfall amount

Beijing 2012-07-21
Xiamen 2013-05-16
Kunming 2013-07-19
Wuhan 2013-07-07

215mm/16h ~620mm

141mm/8h ~1100mm

334mm/17h ~1200mm

190mm/12h ~980mm
Climate change impacts assessment in urban drainage system: Temporal downscaling is needed.

Global/regional climate models provide predicted future precipitation information for possible impact assessments, such as:

- Investigating the future precipitation regimes and hydrological cycle changes in a specific area, annual and seasonal results has the advantages of emphasizing the distinctions in a macroscopic perspective.

- As to the water resource assessment and planning, seasonal or monthly rainfall perdition would be highly valuable and likely adequate.

- Downscaled maximum daily precipitation as the input for the extreme events modeling could provide appropriate recommendations and potential measurements for impact adaptation.
Climate change impacts assessment in urban drainage system: Temporal downscaling is needed.

In the planning and operation of urban drainage system, the rainfall information (intensity / duration) at sub-daily scale (hourly or even minute-based) plays an important role, which usually summarize into the form of intensity-duration-frequency (IDF) relationship.

For the urban drainage system impact assessment in a changing climate, The climate model outcomes needs both spatial and temporal downscaling procedures.

However, in contrast to spatial downscaling methods applications, the performance of temporal downscaling has attracted little attentions.
Motivations of the research

This paper aims to identify the appropriate combination to apply the downscaling processes, by the way of comparing their corresponding performances based on quantitative evaluations.

There are two important steps in this temporal precipitation downscaling:

- the selection of distribution forms of annual maximum precipitation (AMD) series
- the determination of scale invariance options

- Generalized Extreme Value
- Gamma distribution
- Log-Normal distribution
- simple scaling
- two-stage scaling

This paper aims to identify the appropriate combination to apply the downscaling processes, by the way of comparing their corresponding performances based on quantitative evaluations.
Outline

◆ Introduction
 ➢ The impacts of climate change related urban flooding in China cities
 ➢ Motivation and objectives of the research

◆ Temporal precipitation downscaling method
 ➢ Foundation of mathematics
 ➢ Calculation procedures
 ➢ Performance evaluation based on the statistical indicators

◆ Case study: three cities in China
 ➢ The selection of distribution forms
 ➢ The determination of scale invariance options
 ➢ Performance evaluation

◆ Conclusion
The method is based on the scaling invariance property of precipitation:

\[f(x) = C(\lambda) \times f(\lambda x) \]

Burlando and Rosso (1996) demonstrated a power law form of IDF relationship can be derived from the scale invariance concept:

\[P_d = \lambda^\beta \times P_{sd} \]

- where \(\lambda \in [0,1] \) indicates the scale parameter. \(P_d \) and \(P_{sd} \) represents the series of annual maximum rainfall intensity at daily scale and sub-daily scale, respectively. And \(\beta \) represents the scaling exponent.
- IDF is the Intensity-Duration-Frequency Possibility distribution.
Calculation procedures

◆ the scale invariance of the distributions results in the equality of their moments of order q

$$\langle P^q_d \rangle = \lambda^{K(q)} \times \langle P^q_{sd} \rangle$$

◆ In order to calculate the value of θ, we can simply take the logarithm of both sides of above equation, which transforms it into following:

$$\log(P^q_d) = K(q)\log\lambda \times \log(P^q_{sd})$$

• If the scale function is linear, $K(q) = \beta q$, the process is a simple scaling; otherwise the process is multi-scale.
• In this form, the function of scaling exponent, is regarded as the slope of the relationship between the log-transformed values of annual maximum series and the scale parameter, and could be obtained from the log-log plot.
Calculation procedures

Once θ is determined, the hourly rainfall intensity of various durations (1, 3, 6, 12, 18 and 24 hours) could be calculated by the values of daily precipitation with the corresponding λ ($1/24$, $1/8$, $1/4$, $1/2$, and 1).

Repeat this process for different return periods (1, 2, 3, 5, 10, 15, 20, 25 years), the required IDF curve could be drawn.

On the other hand, the local existing IDF relationship obtained by the storm intensity formula:
Four statistical indicators for performance evaluation

◆ mean bias error (MBE)

$$MBE = \frac{1}{n} \sum_{i=1}^{n=40} (y'_i - y_i)$$

◆ root mean square error (RMSE)

$$RMSE = \left[\frac{1}{n} \sum_{i=1}^{n=40} (y'_i - y_i)^2 \right]^{0.5}$$

◆ index of agreement (d)

$$d = 1 - \frac{\sum_{i=1}^{n=40} (y'_i - y_i)^2}{\sum_{i=1}^{n=40} (|y_i - y_{avg}| + |y'_i - y_{avg}|)^2}$$

◆ coefficient of determination (R²)

$$R^2 = 1 - \frac{\sum_{i=1}^{n=40} (y'_i - y_i)^2}{\sum_{i=1}^{n=40} (y_i - y_{avg})^2}$$
Outline

◆ Introduction

➢ The impacts of climate change related urban flooding in China cities
➢ Motivation and objectives of the research

◆ Temporal precipitation downscaling method

➢ Foundation of mathematics
➢ Calculation procedures
➢ Performance evaluation based on the statistical indicators

◆ Case study: three cities in China

➢ The selection of distribution forms
➢ The determination of scale invariance options
➢ Performance evaluation

◆ Conclusion
Case study cities: located in disparate climate areas

Urumchi city (UC)
- 269 mm

Kunming city (KM)
- 984 mm

Sanya city (SY)
- 1385 mm
Fitted AMD precipitations and observations

- For low return periods, relative error controlled within 3%
- Condition varies for the extreme values among different cities
- Negative
 - 5%
 - 21%
 - 28%
IDF curves comparison with different return periods

- Simple scaling is better;
- 5%;
- Multiple scaling match well when duration bigger than 6 hr.
- a much less concise and explicit image;
- the different scale invariance options still exist;
- also the disparities of various fitted distributions shown up.
IDF curves comparison with different return periods

- Differences for the shorter duration is much bigger than the ones with the longer duration;
- Since the AMD-distribution-fitting performed similar in the UC and SY cases, so these differences are caused by the variance options selection;
- In other words, the scale variance options in the proposed temporal downscaling play a significant role in the process of deriving the rainfall intensities with shorter durations.
Performance comparison of different combination

<table>
<thead>
<tr>
<th>Case</th>
<th>Items</th>
<th>MBE</th>
<th>RMSE</th>
<th>d</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM</td>
<td>LogNorm-Simple</td>
<td>-1.86</td>
<td>3.13</td>
<td>0.9890</td>
<td>0.9599</td>
</tr>
<tr>
<td></td>
<td>GEV-Simple</td>
<td>-0.59</td>
<td>1.42</td>
<td>0.9980</td>
<td>0.9917</td>
</tr>
<tr>
<td></td>
<td>Gamma-Simple</td>
<td>-1.18</td>
<td>1.66</td>
<td>0.9971</td>
<td>0.9887</td>
</tr>
<tr>
<td></td>
<td>LogNorm-TwoStage</td>
<td>-4.98</td>
<td>8.46</td>
<td>0.8865</td>
<td>0.7073</td>
</tr>
<tr>
<td></td>
<td>GEV-TwoStage</td>
<td>-3.03</td>
<td>5.86</td>
<td>0.9531</td>
<td>0.8597</td>
</tr>
<tr>
<td></td>
<td>Gamma-TwoStage</td>
<td>-4.44</td>
<td>7.52</td>
<td>0.9145</td>
<td>0.7687</td>
</tr>
<tr>
<td>UC</td>
<td>LogNorm-Simple</td>
<td>0.21</td>
<td>0.40</td>
<td>0.9992</td>
<td>0.9968</td>
</tr>
<tr>
<td></td>
<td>GEV-Simple</td>
<td>0.27</td>
<td>0.41</td>
<td>0.9991</td>
<td>0.9967</td>
</tr>
<tr>
<td></td>
<td>Gamma-Simple</td>
<td>0.30</td>
<td>0.45</td>
<td>0.9990</td>
<td>0.9960</td>
</tr>
<tr>
<td></td>
<td>LogNorm-TwoStage</td>
<td>-2.39</td>
<td>4.47</td>
<td>0.8163</td>
<td>-0.2510</td>
</tr>
<tr>
<td></td>
<td>GEV-TwoStage</td>
<td>-2.35</td>
<td>4.42</td>
<td>0.8217</td>
<td>-0.2135</td>
</tr>
<tr>
<td></td>
<td>Gamma-TwoStage</td>
<td>-2.33</td>
<td>4.40</td>
<td>0.8236</td>
<td>-0.2035</td>
</tr>
<tr>
<td>SY</td>
<td>LogNorm-Simple</td>
<td>0.24</td>
<td>0.82</td>
<td>0.9997</td>
<td>0.9986</td>
</tr>
<tr>
<td></td>
<td>GEV-Simple</td>
<td>-0.14</td>
<td>1.11</td>
<td>0.9994</td>
<td>0.9974</td>
</tr>
<tr>
<td></td>
<td>Gamma-Simple</td>
<td>-0.14</td>
<td>1.17</td>
<td>0.9993</td>
<td>0.9972</td>
</tr>
<tr>
<td></td>
<td>LogNorm-TwoStage</td>
<td>-3.82</td>
<td>7.65</td>
<td>0.9601</td>
<td>0.7823</td>
</tr>
<tr>
<td></td>
<td>GEV-TwoStage</td>
<td>-4.14</td>
<td>7.98</td>
<td>0.9562</td>
<td>0.7608</td>
</tr>
<tr>
<td></td>
<td>Gamma-TwoStage</td>
<td>-4.14</td>
<td>7.99</td>
<td>0.9561</td>
<td>0.7599</td>
</tr>
</tbody>
</table>

- **simple scaling is better than multiple scaling in all the cases**;
- Based on the MBE evaluation, **multiple scaling undervalued** the results to some extent;
- “**GEV-Simple”, “LogNorm-Simple”**, and “**LogNorm-Simple**” showed more suitable than others for the KM, UC, and SY cases.
Outline

Introduction
- The impacts of climate change related urban flooding in China cities
- Motivation and objectives of the research

Temporal precipitation downscaling method
- Foundation of mathematics
- Calculation procedures
- Four statistical indicators for performance evaluation

Case study: three cities in China
- The selection of distribution forms
- The determination of scale invariance options
- Performance evaluation

Conclusion
Conclusion

- The **aim** of this study was to compare the performances of different temporal downscaling methods for deriving the IDF relationships from the AMD rainfall data.

- The **results indicated** that, selecting an appropriate distribution form is important in this process, and **it is a more wise way to test several candidates** rather than using one directly.

- As to the scale invariance options, the **simple scaling** appeared to be **more reliable** in all the cases, and **multiple scaling mainly underestimated** the precipitation intensities with shorter durations.
Acknowledgement

This work was supported by the 2012 University of Nairobi-International Development Research Centre (IDRC) Research Grants on Innovative Application of ICTs in Addressing Water-related Impacts of Climate Change.

We all gratefully acknowledge the help of Asian Management and Development Institute (AMDI) during the research.
Thank you!

Hua Bai
baihua0001@163.com