The SESAME project on small businesses:

Understanding flood impacts, evaluating the effects of adaptation and promoting resilience

Dates: 03 Dec 2012 – 02 Jun 2016

Investigators: Graham Coates, Dabo Guan, Tim Harries, Lindsey McEwen, Martina McGuinness, Nigel Wright

Researchers: Sangaralingam Ahilan, Noel Johnson, Chunhui Li, Amanda Wragg
Research motivation, aim and programme

- Cost of flooding to businesses
- Importance of Small and Medium Enterprises (SMEs)
- SESAME
 - Aims to evaluate current and potential SME flood response strategies, to identify which behaviour changes or actions will enable them to better prepare for / respond to future floods and strengthen their resilience
WP1: Modelling and simulation

- **Aim:** To develop a modelling and simulation approach to investigate SME behaviour in the face of flood events.

Modelling
- Flood Modelling
- Virtual Geographic Environment

Modelling and simulation
- Business Agents
- Agent Interaction Network

Analysis
- Employee work schedule creator
- Performance analyser

Time $= t_i$

Water depth

© Crown copyright and/or database right 2015. All rights reserved.
WP1: Modelling and simulation

- Case study

Sheffield’s Lower Don Valley

Sheffield City Council, Strategic Flood Risk Assessment Area Overview Map

Flood modelling (1 in 1000 year event)

- 5570 organisations
- Manufacturing SMEs
WP1: Modelling and simulation

- Business agents
 - Model existing and potential ‘behaviours’ and ‘attributes’

WP2 & WP4 semi-structured interviews

<table>
<thead>
<tr>
<th>Interview</th>
<th>Sector</th>
<th>ISIC code</th>
<th>Employees</th>
<th>2013</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering</td>
<td>C28</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Engineering</td>
<td>C28</td>
<td>380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Engineering</td>
<td>C28</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Training/support</td>
<td>N78</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Insurance</td>
<td>K65</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Printing</td>
<td>C18</td>
<td>16</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Trade/retail</td>
<td>G46/47</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Recruitment</td>
<td>N78</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Engineering</td>
<td>C28</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Haulage</td>
<td>H52/53</td>
<td>45</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Engineering</td>
<td>C28</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Prop maintenance</td>
<td>N81</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Manufacturing/Eng</td>
<td>C28</td>
<td>200</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Property Agent</td>
<td>L68</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Events</td>
<td>R93</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Domiciliary care</td>
<td>Q86</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Engineering</td>
<td>C28</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Manufacturing/Eng</td>
<td>C28</td>
<td>20</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Engineering</td>
<td>C28</td>
<td>34</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Manufacturing/Eng</td>
<td>C28</td>
<td>14</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Engineering</td>
<td>C28</td>
<td>49</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Engineering</td>
<td>C28</td>
<td>180</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>

Physical & social changes
WP1: Modelling and simulation

Simulation: Example of SME with mutual aid

- \(n_e = 10 \)
- \(n_f = 2 \)
- \(t_{EA}^{alert} = 0:12:00 \)
- \(t_{EA}^{prep} = 0:12:00 \)
- \(EA = \{ S, T \} = \{ 1, 1 \} \)
- \(t_s^{flood} = 1:12:30 \)
- \(t_s^{resp} = 1:12:30 \)
- \(MA = \{ SME_A \} \)
- \(t_e^{flood} = 3:05:30 \)
- \(t_e^{recv} = 3:05:30 \)

\[
PC_{level} = f(\mathcal{R}_l^e, \mathcal{R}_l^m, \mathcal{R}_l^s)
\]

Production capacity level (%)
- Total available machines (%)
- No. of available employees (own site)
- No. of available employees (aid site)

SME without MA
- SME requesting MA
- SME providing MA
WP2: Business continuity processes

- **Aims** to gain an understanding of the behaviours of SMEs when responding to flood events based on their experiences

- **Small and medium-sized businesses**
 - Less likely to be prepared for flooding than their larger counterparts
 - Resources: Limited (time-cash-human), fewer to mobilise in response
 - Less bureaucracy, rapid decision-making, flexibility, adaptability

Research design ➔ Case studies ➔ Findings

ISO 22301 BCM used as basis for exploring flood response behaviours in SMEs

- Sheffield
- Tewkesbury

Findings
Limited evidence of formal BC processes/structures

Key question:
What enabled SME resilience?
- Social capital
- Path dependence
- Bricolage
Flooding in one location can impact the whole UK economy.

Neglecting knock-on costs means we may be ignoring economic benefits of flood risk management interventions.

WP 3 sets out to gain an improved understanding of the:
- economic impacts of floods on SMEs,
- knock-on effects to the wider economy.

Flood footprint is a measure of the total direct and indirect socio-economic impacts caused by a flood to the flooded region and to wider economic systems.
WP3: Economic impact analysis

- **Yorkshire and The Humber**

- **Sheffield City** level ‘Input-Output model’ analysis of 2007 flood
 - **Direct damage** ≈ £282M (≈3.4% of Sheffield City GVA)
 - **Indirect damage** ≈ £172M (≈2.1% of Sheffield City GVA)
 - **Flood footprint** ≈ £454M (≈5.5% of Sheffield City GVA)
 - Approximately 16 months for economic recovery to pre-flood level
Some businesses survive floods… and adapt successfully

But many are unprepared or underprepared, with no:

- Flood protection
- Flood / emergency plans
- Emergency financial reserves
- Data back-ups
- Local support networks
- Strategies for protecting customer relationships

Interviews with flooded businesses suggest possible reasons for this

- Hands-on
- Focus on here-and-now
- Rely on familiar methods
Two contrasting case studies

Building centre
- Owner/manager of a single business
- Little confidence in experts’ advice
- Adaptation viewed as abstract
- Incremental protection based on experience of multiple floods

Tyre fitter
- Owner of several businesses
- Resources used from other businesses to make ‘at-risk’ building more resilient
- Personal relationship with insurance broker
- Systematic adaptation

Owner ‘hands-on’, less strategic

Owner not hands-on, more strategic role
WP4: Adaptive e-learning & behaviour change

- Digital tool to promote long-term adaptation and resilience

 - Learning from the literature, interviews with 40 flooded businesses and from our business/stakeholder researcher partners

 - Developing a tool that will:
 - be interactive
 - facilitate business-to-business discussion
 - include numerous “voices” and perspectives
 - include/invite contributions from businesses
 - include films in which business people
 - interview flooding experts
 - tell their own resilience stories