Addressing Global Water Security through IWRM

SPECIAL SESSION AT INTERNATIONAL WATER RESOURCES ASSOCIATION (IWRA)

XVTH WORLD WATER CONGRESS (EDINBURGH, 25-29 MAY 2015)

Blanca Jimenez-Cisneros
Director of the Division of Water Sciences and
Secretary of the International Hydrological Programme (IHP), UNESCO
Water Security: 21st Century key challenges

| 85% of the human population live in arid and semi arid areas | 6-8 million human beings are killed each year from water-related disasters and diseases. | 750 million people lack access to safe water and 2.5 billion to adequate sanitation. |
Almost 85% of the world’s total wastewater is discharged without adequate or any treatment.

In just thirty years, freshwater populations species declined by 50%.

145 nations have transboundary river basins and there are 445 transboundary aquifers shared by 2-4 countries.
Nearly 80% of the world’s population is exposed to high levels of threat to water security.

IPCC’s Fifth Assessment Report on Impacts, Adaptation and Vulnerability (AR5) 2014: Water Security is at risk.

“What is Water Security?

“the capacity of a population to safeguard access to adequate quantities of water of acceptable quality for sustaining human and ecosystem health on a watershed basis, and to ensure efficient protection of life and property against water related hazards — floods, landslides, land subsidence and droughts.”

IHP-UNESCO
Improve knowledge and innovation to address water security challenges applying IWRM principles.
In many regions, changing precipitation or melting snow and ice are altering hydrological systems, affecting water resources in terms of quantity and quality.

Economic losses caused by floods and droughts have been on the rise. They higher fatality rates and relative economic losses expressed as a proportion of GDP are experienced in developing countries.

By the end of the 21st century, the number of people exposed annually to a 20th-century 100-year flood is projected to be three times greater for RCP8.5 than for RCP2.6.

IPCC AR5 WG2 SPM (2014)
Theme 1: Water-related Disasters and Hydrological Change

1.1 Understanding coupled human and natural processes
1.2 Risk management as adaptation to global changes
1.3 Addressing uncertainty and improving its communication
1.4 Benefiting from remote sensing data and ground truth

IHP-VIII, 2014-2021

Victims: more than 25,000
Refugees: over 20 million
Destroyed homes: 2 million
Theme 2: Groundwater in a changing Environment, Challenges

Human vulnerability to climate-change related to renewable groundwater resources by the 2050s. (Döll, 2009,)

1 °C of temperature rise = 4% of the global land area with a groundwater resources decrease of more than 30%

Pollution increase following extreme rain events with concerns for drinking water treatment
Theme 2: Groundwater in a changing environment

2.1 Enhancing sustainable groundwater resources management

2.2 Strategies for aquifers recharge

2.3 Adapting to the impacts of climate change

2.4 Protecting and improving groundwater quality

2.5 Management of transboundary aquifers
Theme 3: Addressing Water Scarcity and Quality Challenges

Significant future reduction of renewable water in quantity, quality and reliability terms

Energy and Food security at risk because of lack of water and increased water demand

Competition among uses and users, exacerbated at the local, regional and global levels
Theme 3: Addressing Water Scarcity and Quality Challenges

Pollution episodes due to higher temperature (eutrophication), heavy rainfall (sweeping pollutants from soil to water courses) and droughts (reduced dilution)

Risks to the quality of drinking water even with conventional treatment
Theme 3: Addressing Water Scarcity and Quality

3.1 Management, allocation, and efficient use of water resources

3.2 Dealing with present water scarcity and developing foresight to prevent undesirable trends

3.3 Tools for stakeholders involvement and awareness, and conflict resolution

3.4 Water quality and pollution issues within an IWRM framework (legal, policy, institutional and human capacity)

3.5 Innovative tools for safety of water supplies and controlling pollution
Vulnerabilities and Risks: Water Uses – ex. Municipal Services

With more than half of the world population living in cities under conditions of climate change, water utilities are confronted with:

- **Less natural storage of water** (ice melting and higher evapotranspiration)
- **Higher water availability variation** and shift in timing of river flows
- **Higher water demand** due to higher ambient and water temperatures
- **Higher competition** for the resource
- **Higher pollution problems**
- **Insufficient treatment capacity** to deal with increased pollution problems
Theme 4: Water and human settlements of the future

4.1 Game changing approaches and technologies

4.2 System wide changes for integrated management approaches

4.3 Institution and leadership for beneficiation and integration

4.4 Opportunities in emerging cities in developing countries

4.5 Integrated development in rural human settlement

IHP-VIII, 2014-2021
Under high competition scenarios, **water for ecosystems** are those more limited.

Except in areas with intensive irrigation, the impacts on the ecological flow are expected to be stronger than historical impacts due to anthropogenic causes.

By the 2050s, climate change is projected to impact river flow characteristics more strongly than dam construction and water withdrawals have done up to around the year 2000.
Theme 5: Ecohydrology, engineering harmony for a sustainable world

5.1 Hydrological dimension of a catchment (threats and opportunities for a sustainable development)

5.2 Shaping of the catchment ecological structure for ecosystem potential enhancement — biological productivity and biodiversity.

5.3 Ecohydrology system solution and ecological engineering for the enhancement of water and ecosystem resilience and ecosystem services

5.4 Urban Ecohydrology – storm water purification and retention in the city landscape, potential for improvement of health and quality of life.

5.5 Ecohydrological regulation for sustaining and restoring continental to coastal connectivity and ecosystem functioning
• Of the global cost of water-sector adaptation, most (near 85%) is occurring in developing countries where there are many opportunities for anticipatory adaptation.

• Barriers to adaptation include
 – lack of human and institutional capacity
 – lack of financial resources
 – lack of awareness
 – lack of communication
How should water management be modified in the face of climate change?

RESEARCH AND INNOVATION
Long-term planning (over several decades) is needed for a future that is highly uncertain.

EDUCATION
A flexible portfolio of low regret solutions producing benefits regardless of the impacts of climate change.

AWARENESS RAISING
Use current available experience on adapting policies and practices to the weather.
Theme 6: Water education, key for water security

6.1 Enhancing tertiary water education and professional capabilities in the water sector

6.2 Addressing vocational education and training of water technicians

6.3 Water education for children and youth

6.4 Promoting awareness of water issues through informal water education

6.5 Education for transboundary water cooperation
How should water management be modified in the face of climate change?

RESEARCH AND INNOVATION
Long-term planning (over several decades) is needed for a future that is highly uncertain.

EDUCATION
A flexible portfolio of low regret solutions producing benefits regardless of the impacts of climate change.

AWARENESS RAISING
Use current available experience on adapting policies and practices to the weather.
27 centres approuvés, 22 accords signés (établis)
5 nouveaux centres en cours de création
30 chaires relatives de l’eau