Analysis of Heavy Metals in Canal Sediments to Gain a Better Insight into Current and Future Canal Management Strategies

†I. Clark, †C. Somerfield, †V. Archibald, †T. H. H. Tran, ‡L. Bradley, †R. Gomes

†Department of Chemical and Environmental Engineering, The University of Nottingham, United Kingdom

‡Canal and River Trust, Leeds, United Kingdom

Contact: enxic1@nottingham.ac.uk I. Clark

rachel.gomes@nottingham.ac.uk R. Gomes
Canal and Waterway Management

- Historical industrial route
 - Coal, glass and metal-working
 - Approximately 257 km of waterways during peak operation

- Leisure Route
- Maintenance includes
 - 160 km open to navigation
 - Depth maintenance
 - Towpath clearing
 - Refuse collection

Connected to national canal systems at a number of intersections

05/03/2016
05/03/2016

World Water Congress XV
Edinburgh International Conference Centre

2
Canal Maintenance

- Depth maintenance
 - 25 year plan in urban canals
 - 40 year plan in rural canals
 - 8 year survey period
 - Dredging as required at confluences, inlets

- Removal carried out in stages
 - Canal sediment modelling/hydrographic surveys
 - Sectional dredging
 - Sediment disposal via incineration/landfill
Background, Aim and Objectives

- Dredging expenses in 2014 totalled £4.4m
- Canal & River Trust intend to invest £8-10M a year for the next decade on canal maintenance
- Canal & River Trust identified current disposal methods as an area for improvement by
 - Recovering and recycling contaminants present in the sediments
 - Reducing the volume of waste sent to landfill
Background, Aim and Objectives

- **Aim** to improve maintenance sustainability by developing a better understanding of canal sediment contamination

- **Objectives of the project** were to:
 - Identify constituent compounds/elements in canal sediments that require remediation or are recoverable based on value of recycling
 - Evaluate processes that may allow efficient recovery of target constituents
 - Investigate economic feasibility of potential scale up options
 - Measuring sediment accretion to enhance dredging plans
Elements of Interest

- 32 elements targeted
 - 6 heavy metals shown
 - Environmental Regulations
 - Economic Potential
- Legislation Directives
 - 2006/11/EC-Dangerous substances in the aquatic environment
 - 1999/31/EC; 2003/33/EC - Landfill

<table>
<thead>
<tr>
<th>Target Element</th>
<th>Landfill Limit /mg kg(^{-1})</th>
<th>Leach limit /mg l(^{-1})</th>
<th>EQS /µg l(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>0.4</td>
<td>0.3</td>
<td>10</td>
</tr>
<tr>
<td>Cd</td>
<td>0.6</td>
<td>0.3</td>
<td>5</td>
</tr>
<tr>
<td>Cr</td>
<td>4</td>
<td>2.5</td>
<td>50</td>
</tr>
<tr>
<td>Pb</td>
<td>5</td>
<td>3</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target Element</th>
<th>Historical Applications</th>
<th>Current Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>Ceramic and Glass Pigment</td>
<td>Temperature/Corrosion resistant alloys, nanotechnology and chemical industries. 30,680 USD/t. source LME</td>
</tr>
<tr>
<td>Mn</td>
<td>Ceramic and Glass Pigment, Steel Production</td>
<td>Steel and alloy production. Year end value-2,350 USD/t. source ICE</td>
</tr>
</tbody>
</table>
Metals Recovery Method

• Total Digest significant higher recovery

• Aqua Regia (AR) digest used on canal sediment samples

CERTIFIED REFERENCE MATERIALS (CRM)
• SO3/SO4 sediments certified from 40 separate labs
• STSD-2 provisional values

Error bars represent 2 std deviations
Metal Concentration and distribution

![Graph showing Arsenic and Cadmium concentrations in different locations.](image)

Target Element

<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landfill Limit /mg kg(^{-1})</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Leaching limit /mg l(^{-1})</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>EQS /µg l(^{-1})</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Error bar represent 95% confidence intervals for each location.
Metal Concentration and distribution

Chromium

C (mg/kg)

Depth in Canal Bed (cm)

Cobalt

C (mg/kg)

Depth in Canal Bed (cm)

Lead

C (mg/kg)

Depth in Canal Bed (cm)

Manganese

C (mg/kg)

Depth in Canal Bed (cm)

Location 1 Location 2 Location 3 Location 4 Location 5

05/03/2016
Management Strategies

Areas for improvement

- Recovering and recycling contaminants present in the sediments
- Reducing the volume of waste sent to landfill

Drivers behind improvement

- Environmental and economic considerations for current practice versus potential management practice
- Concentration of analytes in the sediment may at a level requiring disposal to hazardous landfill (sustainability issues)
- Current practice of blending requires analytical service costs and availability of uncontaminated material (sustainability issues)
- Economics also extend to associated transport and disposal* costs.

*dredging activities are exempt from landfill taxes
Management Strategies

• Improved knowledge on distribution and concentration of heavy metals targeted management/treatment of sediment

• Targeted treatment
 – Less inert material for blending
 – Carry out targeted remediation allowing recovery of materials

• Recovery of materials
 – Metals and inorganic constituents
 – Sediment

• Any recovery method must be economically and environmentally viable

<table>
<thead>
<tr>
<th>Heavy Metal</th>
<th>Lowest mean concentration /mg kg$^{-1}$</th>
<th>Landfill limit /mg kg$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>34.1 ± 8.1 location 1</td>
<td>0.4</td>
</tr>
<tr>
<td>Cd</td>
<td>20.0 ± 1.4 location 5</td>
<td>0.6</td>
</tr>
<tr>
<td>Cr</td>
<td>241.7 ± 15.7 location 1</td>
<td>4</td>
</tr>
<tr>
<td>Pb</td>
<td>790.7 ± 80.9 location 4</td>
<td>5</td>
</tr>
</tbody>
</table>
Summary

- Comprehensive sampling-Depth and Location
- Constituent concentration depth, location and element specific
 - Aqua Rega digest does not provide absolute recovery data
- Depth and location data allows the possibility of targeted remediation
- Recovery of constituents and sediment material
- More work needed in inorganic and organic constituent identification

Sustainable canal management

Environmental impact

Value offset

Inorganic constituents

Organic components

Sediment solids

05/03/2016 World Water Congress XV Edinburgh International Conference Centre
Acknowledgements

- **John Hinchcliffe and Brian Vincent** – Design and manufacture of sampling and extraction equipment

- **Adele Lawrence, Priscilla Cavalheiro Mendes Moitta, Xiao-Xi Liu and Hannah Beska** – Sampling and analytical support

- **Dave Clift** – Sample extraction and analytical support

- **Victoria Taylor** – Hydrographic survey and current sediment management practices
Core Extraction (3cm depth x 6.4cm diameter) → Oven Dry (60°C max, 24hrs) and ground sediment

Microwave digest stage 1: 10ml HNO₃, 1hr 190°C → Oven Dry (60°C max, 24hrs) Weigh 0.5g

Microwave digest stage 2: 2ml HCl + 5ml HF, 40mins 190°C → Microwave digest stage 3: 30ml 4% boric acid, 30mins 170°C

Analysis by ICP-AES spectrometry → Make up to 100ml with 18.2 MegΩ water

Core Extraction oven dry (60°C, 24hrs) → Sediment ground to fine powder

Aqua Regia Digest: 20ml; Temperature 20-120°C → Oven Dry. 1g of sample weighed

AR Digest: 20ml; 120°C for 2-8 hrs, AR Digest: 10ml 10%v/v HNO₃; 120°C for 30mins → Increase to 100mL with 10%v/v HNO₃; Centrifuge

Reconstitute to 40mL with 10%v/v HNO₃; Centrifuge → Sample analysis using ICP-AES