Assessing water supply and demand vulnerabilities within the water-food-energy nexus: a quantitative perspective from Western Australia

Ellie Biggs1, Bryan Boruff2, Natasha Pauli2, Julian Clifton2 and Nik Callow2

1Geography and Environment, University of Southampton, UK
2Earth and Environment, University of Western Australia, Australia
A Nexus Approach

Assessing water supply and demand vulnerabilities within the water-food-energy nexus

- Accelerating development
- Urbanisation
- Climate change
- Globalisation
- Resources degradation
- Land and water scarcity
- Water-energy-food security

→ How can we measure?

Highly applicable to Western Australia

Hoff (2011)
Spatial Multidimensional Indices

Integrated index
- Representative of environmental and socioeconomic conditions
- Address water-energy-food scarcity
- Promote equal development
- More informative for decision-making
- Greater potential to effectively improve livelihoods

* e.g. Sullivan et al. (2008); Cohen and Sullivan (2010); Sullivan (2011); Sullivan and Meigh (2005)

Spatial application
- Appropriate scale for adaptation and coping mechanisms
- Effective targeting for management of resources
THE WHEATBELT, WESTERN AUSTRALIA

- Diverse population
- Rich in environmental resources
 - Minerals & Petroleum
 - Agriculture
- Drive for economic development
- Limited consideration for environmental sustainability
- Push for intensive energy generation and food production
- Freshwater resource scarcity

Wheatbelt Development Commission (2012)
“Water supply is fundamental for supporting and sustaining community and industry development in the Wheatbelt.” (WDC, 2013)

→ Assessment of water vulnerability required to build future preparedness

Boruff et al. (in prep)
CALCULATING VULNERABILITY

Assessing water supply and demand vulnerabilities within the water-food-energy nexus

Water System Vulnerability (WSV) = WSSV + WSDV

Supply Vulnerability (WSSV)
- Precipitation characteristics
- Sustainability of aquifer(s)
- Density and capacity of scheme

Demand Vulnerability (WSDV)
- Evapotranspiration
- Temperature
- Livestock density
- Land under cropping
- Population density
- Employment in water-dependent sectors
- Distance to scheme

Stepwise regression used to identify dominant variables on system vulnerability
Assessing water supply and demand vulnerabilities within the water-food-energy nexus | WWC Edinburgh 2015

Preliminary results

WSSV
WSDV
WSV

2001
2006
2011

Supply Vulnerability

0.0 - 0.2
0.3 - 0.4
0.5 - 0.6
0.7 - 0.8
0.9 - 1.0

0 125 250 500 Km

Boruff et al. (in prep)
Preliminary results

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2006</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity reliability</td>
<td>Capacity reliability</td>
<td>Capacity reliability</td>
<td></td>
</tr>
<tr>
<td>Local water abstraction</td>
<td>Local water abstraction</td>
<td>Local water abstraction</td>
<td></td>
</tr>
<tr>
<td>Supply and delivery capacity</td>
<td>Supply and delivery capacity</td>
<td>Population demand</td>
<td></td>
</tr>
<tr>
<td>Livestock demand</td>
<td>Livestock demand</td>
<td>Supply and delivery capacity</td>
<td></td>
</tr>
<tr>
<td>Crop demand</td>
<td>Industrial demand</td>
<td>Crop demand</td>
<td></td>
</tr>
<tr>
<td>Population demand</td>
<td>Population demand</td>
<td>Livestock demand</td>
<td></td>
</tr>
<tr>
<td>Industrial demand</td>
<td>Crop demand</td>
<td>Industrial demand</td>
<td></td>
</tr>
</tbody>
</table>

Boruff et al. (in prep)
WSV INDEX IMPLICATIONS

• Informative planning for Wheatbelt Development Commission
 • Wheatbelt water strategy (action required)
 • Targeting development of technology to reduce demand vulnerability (e.g. scheme expansion) and supply vulnerability (e.g. desalination capacity)

• Can incorporate future pressures and growth rates to reflect projected water vulnerability for region

• Transferable index-building process to apply quantitative system vulnerability concept to other regions

• Potential expansion to consider energy and food systems
 • Better manage trade-offs and synergies between nexus linkages
Assessing water supply and demand vulnerabilities within the water-food-energy nexus

• Determine vulnerabilities within the energy and food systems in Wheatbelt
• Deliver a nexus-based approach for assessing system vulnerability to promote sustainable resource practice

Biggs et al. (in review)
REFERENCES

Follow updates on Twitter @EllieMBiggs

Acknowledgements This project was funded by the World Universities Network. Thanks go to Yinghui Cathy Cao, Department of Water, Water Cooperation and Wheatbelt Natural Resources Management